ICCS 2008
The 6th International Conference of Cognitive Science

Organized by
The Korean Society for Cognitive Science
Hosted by
Center for Cognitive Science,
BK21 Psychology & BK21 Communication Interface,
and the Graduate Program in Cognitive Science
of Yonsei University

July 27 - 29, 2008
Daewoo Hall, Yonsei University
Seoul, Korea

†This proceedings was supported by the Korea Research Foundation Grant funded by the Korea Government (MOEHRD, Basic Research Promotion Fund).
ORGANIZATION OF ICCS 2008

Organizing Committee
Chair: Chan-Sup Chung (Yonsei Univ.)
Min-Shik Kim (Yonsei Univ.)
Hyung-Chul Li (Kwangwoon Univ.)
Do-Joon Yi (Yonsei Univ.)
Soo Yeon Kim (Sejong Univ.)
Sang Chul Chong (Yonsei Univ., Local Administration Chair)
Seong-Whan Lee (Korea Univ.)
Jinwoo Kim (Yonsei Univ.)
Yllbyung Lee (Yonsei Univ.)
Joohan Kim (Yonsei Univ.)

Program Committee
Chair: Chungmin Lee (Seoul Nat’l Univ.)
Co-Chair: Hee-Rahk Chae (HUFU)
Reom-mo Kang (Korea Univ.)
Byong Rae Ryu (Chungnam Nat’l Univ.)
ChangHo Park (Chonbuk Nat’l Univ.)
Chungkil Lee (Seoul Nat’l Univ.)
Daeyeol Lee (Yale U.)
Frank Pollick (U. of Glasgow)
Hyn Pil Shin (Seoul Nat’l Univ.)
Jae-Woong Choe (Korea Univ.)
Jongsup Jun (HUFU)
Kihyeon Kim (Seoul Nat’l Univ.)
Kwangoh Yi (Yeungnam Univ.)
Kyung-Soo Do (Sungkyunkwan Univ.)
Li-Hai Tan (U. of Hong Kong)
Naomi Miyake (Chukyo U.)
Peter Slezak (UNSW)
Soo Young Lee (KAIST)
Sung-il Kim (Korea Univ.)
Yukinori Takubo (Kyoto U.)
Bruno G. Bara (U. of Turin)
Byung-Tak Zhang (Seoul Nat’l Univ.)
Charles Ling (U. of Western Ontario)
Chu-Ren Huang (Academia Sinica)
Dedre Gentner (Northwestern U.)
Heedon Ahn (Konkook Univ.)
Hyun-Joo Song (Yonsei Univ.)
Jin-Hoon Sohn (Chungnam Nat’l Univ.)
Kichun Nam (Korea Univ.)
Koiti Hasida (AIST)
Kyung-Min Lee (Seoul Nat’l Univ.)
Li Chen (CAS)
Marvin Chun (Yale U.)
Paul Thagard (U. of Waterloo)
Sook Whan Cho (Sogang Univ.)
Sung-Bae Cho (Yonsei Univ.)
Woo Hyun Jung (Chungbuk Nat’l Univ.)

Local Advisory Committee
Chai Song Hong (Seoul Nat’l Univ.)
ILL-Hwan Rim (HUFU)
Jung-Mo Lee (Sungkyunkwan Univ.)
Key-Sun Choi (KAIST)
Myung-Hyun Lee (Seoul Nat’l Univ.)
Young-Jung Kim (Seoul Nat’l Univ.)
Ik-Hwan Lee (Yonsei Univ.)
Jin-Hyung Kim (KAIST)
Juri-Soo Kwun (Seoul Nat’l Univ.)
Kyung-Jin Kim (Seoul Nat’l Univ.)
Yoo-Hun Suh (Seoul Nat’l Univ.)

Local Administration Staffs
Jieun Lee
Jingi Kong
Jihyun Kim
Nam Nguyen
Jooha Hyun
Jihyun Lee
Yukyung Park
Changgeol Kim
† Cover Design Adopted from Journal of Cognitive Science
Table of Contents

[Invited Talks] ... 1

Invited Talks I -- 7/28 (Mon), 9:20-10:40...

Gary Libben (University of Alberta) On the Issue of Mental Lexicon 2

James Pustejovsky (Brandeis University) Co-composition and Argument Selection 9

Invited Talks II -- 7/28 (Mon), 11:00-12:20...

Shihui Hai (Peking University) Cultural Influence on Neural Substrates of Human Cognition 13

Byung-Kiun Haeng (Seoul National University): How Stable Is Long-Term Memory? 15

Invited Talks III 7/29 (Tue), 10:50-12:10...

Susan Fischer (University of California at San Diego) Getting in the Way: Sign Language Processing under Adverse Conditions ... 19

Jean Aitchison (Oxford University) Chimps, Children, and Language Origin: Are There Any Links? 24

Invited Talks IV -- 7/29 (Tue), 17:00-18:20...

Keiji Uchikawa (Tokyo Institute of Technology): Color Naming of Indistinguishable Colors by Dichromats ... 27

David Chalmers (Australian National University): Extending the Mind into the World 31

[Papers]... 36

Papers I -- 7/28 (Mon), 14:10-15:40...

Session A - Psychology: Perception...

Session B - Linguistics: Semantics/Pragmatics...

Session C - Aesthetics, Philosophy and Others...

... 37

... 38

... 63

... 86

Papers II -- 7/28 (Mon), 16:00-17:45...

Session A - Psycholinguistics...

Session B - Linguistics: Acquisition, Perception and Processing...

Session C - Artificial Intelligence and Computer Science...

... 113

... 114

... 142

... 155

Papers III -- 7/29 (Tue), 9:00-10:30...

Session A - Psychology: Learning and Memory...

Session B - Linguistics: Perception and Processing...

Session C - Others...

... 186

... 187

... 217

... 242

Papers IV -- 7/29 (Tue), 15:00-16:45...

Session A - Psychology: Thinking and Applied Cognition...

Session B - Linguistics: Morphology/Syntax and Phonology, Education...

Session C - Neuroscience...

... 266

... 267

... 293

... 321
[Posters] ... 346
 Posters I — 7/27 (Sun), 9:00-13:00... 341
 Linguistics... 348
 (participant posters)... 412
 Posters II — 7/28 (Mon), 12:20-14:10... 417
 Anthropology... 418
 Artificial Intelligence... 423
 Computer Science.. 432
 Education... 442
 Neuroscience... 455
 Others... 494
 Psychology A... 498
 (participant posters)... 542
 Posters III — 7/29 (Tue), 12:10-15:00.. 545
 Psychology B.. 546
 (participant posters)... 730

[Workshops].. 745
 Workshop I — 7/27 (Sun), 9:00-18:30... 746
 Topic: Quantification in East Asian Languages.. 747
 Organizer: Kei Yoshinoto (Tohoku U)... 747
 Workshop II — 7/28 (Mon), 13:20-17:45.. 781
 Topic: Language, culture and cognition.. 782
 Organizer: Debi Roberson (University of Essex).. 782
 Workshop III — 7/29 (Tue), 09:00-13:00.. 786
 Topic: Reading Development and Impairment in Asian Languages.......... 787
 Organizers: Catherine McBride-Chang (The Chinese University of Hong Kong) and Jeong-Ryeul Cho (Kyungnam U).. 787
 Workshop IV — 7/29 (Tue), 13:00-16:50... 795
 Topic: Symposium on Decision Making and the Brain............................ 796
 Organizer: Daeyeol Lee (Yale University) and Minwhan Jung (Ajou University)... 796

Reviewers.. 809
Phonological and other linguistic effects in recognition of Chinese characters

Kent Lee

Department of Educational Psychology, University of Illinois at Urbana-Champaign, IL 61801 USA
* Correspondence should be addressed to kentlee7@gmail.com

Abstract

Phonological factors involved in Chinese character recognition were examined with a naming experiment, while examining and controlling for other relevant influences. Phonological priming had no effect at the 50 ms SOA, but a number of other influences were detected—phonological, visual, orthographic, lexical, semantic, and morphological. The findings indicate the complexity and multiple routes of information, with concurrent inhibitory and facilitatory influences, involved in Chinese character and lexical processing.

The most common type of Chinese character contains a semantic radical plus a phonetic component, sometimes known as a phonogram (Karlsgren, 1923). Phonograms are found in 80-90% of Chinese characters, and provide cues about the whole character pronunciation. In the context of compound words, this division is typically employed fairly simple designs and controlled for or examined relatively few factors, mainly lexical or character frequency. Other studies have controlled for or examined phonological consistency, i.e., the degree of phonological relatedness between the phonogram and whole-character pronunciation, as well as studies of children's reading proficiency and phonological awareness of Chinese (Shu et al., 2003).

However, the phonological priming studies have sometimes been challenged, in failure to replicate some of them, or by explaining the priming effects as orthographically mediated. With the phonological effects being a by-product of orthographic and semantic recognition (e.g., Zhou & Marslen-Wilson, 1999a, 1999b; Zhou et al., 1999).

For a better understanding of Chinese phonological priming, various factors need to be examined, including potential those found in priming studies of other languages, and those that might arise from the unique nature of Chinese script. These include the general semantic concreteness effect of word meanings as found in various languages (i.e., tangible, physical, imaginable, as opposed to abstract; e.g., Balota et al., 2004), as has been found for Chinese (Zhang et al., 2006); radical combinatoriality, i.e., frequency of semantic radicals (Feldman & Siok, 1997); morphological family size (Daaycu et al., 2006); or frequency of characters in multi-morphemic Chinese compounds (Taft & Zhu, 1997); and syllable frequency in English (Balota et al., 2004; Conrad, Carreiras & Jacobs, 2008).

Examining these variables in phonological priming of Chinese characters might clarify the previous findings, and indicate whether character recognition is a simple matter of one linguistic route mediating another, or whether the process is more complex and multi-route.

Experiment

A naming experiment was conducted, examining two possible types of phonological priming—traditional homophone primes, and with phonograms as prime, with the hope of examining phonological and other factors involved in each type of priming, for a finer grained picture of influences operative in phonological processing of characters.

Phonological Correspondence

Phonological consistency and regularity effects have been assessed for characters in phonological...
priming studies (e.g., Fang, Hong, & Tseng, 1986). However, past studies have treated these as unidimensional variables, while in reality, they are multi-dimensional. Regularity, or phonological correspondence between the phonogram and the whole character, can differ for onsets and rimes, as can consistency, or the variability of phonograms in the number of different whole character pronunciations associated with them. For example, 九 kàng appears as a phonogram in 九 kàng, 航 hàng and 航 hàng; 眼 jīng appears in 眼 jīng and 航 liàng; 句 gōu in 但 jù, and 句 gōu in 客 kè, 母 gé, and 眼 liàng. Complex and differing patterns appear for onset correspondences and rime correspondences, due to complex historical sound changes in Chinese. Thus, separate regularity and consistency indices were created for onsets and rimes for this experiment. Consistency is a numerical variable, a ratio of a given character pronunciation over the number of pronunciations associated with a given phonogram, weighted by character frequency (Shu et al., 2003). Regularity is a categorical variable for types of phonological correspondence (for onsets: same onset, or differing by place or manner of articulation, affrication, gliding, or wholly different onset; for rimes: same vowel + tone; same vowel with different tone; different vowel; and wholly different rime structure).

Other Variables

Radical frequency, character frequency, morphemic frequency of characters (frequency of individual characters in multi-syllabic compounds), syllable frequency, neighborhood frequency, and radical family size (number of characters with a semantic radical) were included. Semantic factors were included, and were derived from native Mandarin speakers’ ratings of characters for semantic relatedness of radicals to character, and for semantic concreteness of characters, from which semantic indices were derived for character concreteness, and for the semantic variability or consistency of semantic radicals across characters.

To control for visual or orthographic priming effects, particularly for phonogram primes, the number of shared strokes between primes and targets was entered as a stroke ratio index, along with an index of the number of components in a target character, and a density ratio for target character (ratio of strokes to components per character) to control for spatial density. The stroke ratio followed Ferrand and Grainger (1994), who likewise used a shared letter index to control for prime-target letter similarity, to control for form priming effects, and to disambiguate orthographic form priming from phonological priming.

Design, Method, and Procedure

150 target characters were presented with the E-Prime experimental software. Targets were preceded by phonogram, or homophone masked primes or control non-character primes (ASCII symbols), counterbalanced across three lists. Primes were presented at 50ms prime duration (or SOA, stimulus onset asynchrony); primes were preceded and followed by a brief visual mask, and then the target item was presented. Also included were 335 filler items. Subjects were asked to name the characters as quickly as possible, or say “bu zhida” (“don’t know”) if they did not recognize it. Responses were recorded on a digital recorder, and response times were recorded by the E-Prime software. 54 subjects from the University of Illinois area were recruited as paid subjects (Mandarin native speakers who lived in Taiwan until at least age 15), as the stimuli used were in traditional characters. The data were analyzed using hierarchical linear modeling (HLM), as in Bulota et al. (2004).

Results

Inaccurate responses were deleted (9.1% of all responses), and response times above 2500 ms or c. 1600ms were excluded. Mean reaction times are shown in Table 1. As can be seen, at 50ms no priming effect was evident in the means, and in the analysis it was non-significant. Thus, the results are equivalent to a non-primed naming experiment, and the response times were regressed on the other variables.

Table 1: Mean reaction times

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homophonc</td>
<td>3329</td>
<td>800.2</td>
<td>262.8</td>
</tr>
<tr>
<td>Phonogram</td>
<td>3326</td>
<td>792.8</td>
<td>259.5</td>
</tr>
<tr>
<td>Control</td>
<td>3331</td>
<td>789.0</td>
<td>254.3</td>
</tr>
<tr>
<td>Total</td>
<td>9986</td>
<td>794.0</td>
<td>258.9</td>
</tr>
</tbody>
</table>

The following factors were found to be significant: (1) number of components in the target character, as a control for visual density, with an inhibitory effect - more components lead to slower
Discussion

In spite of a lack of any priming effect, the results are informative, as they indicate a whole set of concurrent inhibitory and facility effects operative at the 50 ms time frame. Inhibitory effects follow from visual complexity, while facility effects follow from concreteness, syllable and morpheme frequency, radical consistency, phonological consistency and rime regularity. Some effects are difficult to explain (e.g., inhibitory effects of phonogram frequency), except perhaps as a result of competitive inhibition with other factors at 50 ms.

Some of the previous disparate results in the Chinese priming literature may have been due to a failure to control for various linguistic and visual factors such as those included here. A future experiment will follow up with multiple SOAs to see if priming effects obtain at other time frames.

A naming task normally favors phonological over semantic processing (Balota et al., 2004), yet character concreteness, radical semantics, and radical family size were operative here. A top-down effect of morphological frequency was also implicated. Phonological processing was found to be more complex, with separate effects for rimes and onsets, and for phonogram and character frequencies.

The number of phonological factors in play here would support a claim of direct phonological activation and processing from phonological information in Chinese character forms. However, phonological activation is concurrent with
semantic and morphological processing. The complexity of the effects, and the concurrence of inhibition and facilitation from phonological, morphological, semantic, and orthographic factors, would tend to favor a more complex model than the simpler modular or interactive models in the literature, and would argue against one modality (phonology or semantics) mediating another or preceding another in processing time. Instead, a more complex multi-route model is in order, which allows for different levels or subroutes of phonology (rime, onset, frequency effects) and interactions of different modalities subroutes that operate in parallel.

Acknowledgments
The author would thank Kiel Christianson, Jerry Packard, Richard Sprott, Richard Anderson, Gary Dell, Sun-A Kim, my data coders, and many labmates. This research was supported with a Beckman Cognitive Science / AI grant from the Beckman Institute of the University of Illinois at Urbana-Champaign.

References

